
International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 52

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Improving the Efficiency of Implementing K-
Means Algorithm on Different Big Data Platforms

Manal A. Abdel-Fattah
Information Systems Department

Faculty of Computers and Information, Helwan University
Cairo, Egypt

manal_8@hotmail.com

Yehia M. Helmy
Business Information Systems Department

Faculty of Commerce and Business Administration, Helwan University
Cairo, Egypt

ymhelmy@yahoo.com

Sara M. Mosaad
Business Information Systems Department

Faculty of Commerce and Business Administration, Helwan University
Cairo, Egypt

sara.mosaad87@gmail.com

Abstract— Due to the expansion of the data size and the limitation of a single machine, considering parallelism in a distributed

computational environment was a natural solution to overcome this expansion. Spark and Flink are open source frameworks for processing

data in both real-time mode and batch mode. It provides several benefits such as fault-tolerant and large-scale computation which is a

general engine for large-scale data processing. In this paper, we major in the efficiency optimization of one of the implicit partitioning

clustering algorithm, K-means, to get high clustering performance by handling the indication of the optimal number of clusters issue based

on a joint combination of three different methods.

Index Terms— k-means algorithm; Big Data Platforms; Spark; Flink; Number of Clusters Determination.

—————————— ——————————

1 INTRODUCTION

In this section the main description of the sciences included in

the thesis will be introduced which is about the Big Data different

definitions and it’s Six V’s, the K-means Algorithm and its points

of strength and weakness, The Big Data platforms; Apache Spark

and Apache Flink and their architecture and reasons of choosing

them and the properties of clustering algorithm that should be

considered for big data analysis.

Big Data

According to Gartner, Inc. big data is defined as; “Big data is

high-volume, high-velocity and high-variety information assets

that demand cost-effective, innovative forms of information pro-

cessing for enhanced insight and decision making.” Similarly,

TechAmerica Foundation

Fig.1: The Six V's of Big Data.

defines big data as follows; “Big data is a term that describes

large volumes of high velocity, complex and variable data that

require advanced techniques and technologies to enable the cap-

ture, storage, distribution, management, and analysis of the in-

formation.”

The big data is not only characterized by the three Vs mentioned

above but may also extend to six Vs, namely, volume, variety,

velocity, variability, veracity and value . This 6V definition is

IJSER

http://www.ijser.org/
mailto:manal_8@hotmail.com
mailto:ymhelmy@yahoo.com
mailto:sara.mosaad87@gmail.com

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 53

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

widely recognized because it highlights the meaning and necessi-

ty of big data (Gandomi and Haider 2015)(Hashem et al. 2015).

Volume. refers to the magnitude of data. Big data sizes are re-

ported in multiple terabytes and petabytes. A survey conducted

by IBM in mid-2012 revealed that just over half of the 1144 re-

spondents considered datasets over one terabyte to be big data

Definitions of big data volumes are relative and vary by factors,

such as time and the type of data. What may be deemed big data

today may not meet the threshold in the future because storage

capacities will increase, allowing even bigger data sets to be cap-

tured.

Variety. refers to the structural heterogeneity in a dataset. Tech-

nological advances allow firms to use various types of structured,

semi-structured, and unstructured data. Structured data, which

constitutes only 5% of all existing data, refers to the tabular data

found in spreadsheets or relational databases. Text, images, au-

dio, and video are examples of unstructured data, which some-

times lack the structural organization required by machines for

analysis. Spanning a continuum between fully structured and

unstructured data, the format of semi-structured data does not

conform to strict standards. Extensible Markup Language

(XML), a textual language for exchanging data on the Web, is a

typical example of semi-structured data.

Velocity. refers to the rate at which data are generated and the

speed at which it should be analyzed and acted upon. The prolif-

eration of digital devices such as smart phones and sensors has

led to an unprecedented rate of data creation and is driving a

growing need for real-time analytics and evidence-based plan-

ning. Even conventional retailers are generating high-frequency

data. Wal-Mart, for instance, processes more than one million

transactions per hour. The data emanating from mobile devices

and flowing through mobile apps produces torrents of infor-

mation that can be used to generate real-time, personalized offers

for everyday customers. This data provides sound information

about customers, such as geospatial location, demographics, and

past buying patterns, which can be analyzed in real time to create

real customer value.

Veracity. IBM coined Veracity as the fourth V, which represents

the unreliability inherent in some sources of data. For example,

customer sentiments in social media are uncertain in nature, since

they entail human judgment. Yet they contain valuable infor-

mation. Thus the need to deal with imprecise and uncertain data

is another facet of big data, which is addressed using tools and

analytics developed for management and mining of uncertain

data.

Variability (and complexity). SAS introduced Variability and

Complexity as two additional dimensions of big data. Variability

refers to the variation in the data flow rates. Often, big data ve-

locity is not consistent and has periodic peaks and troughs. Com-

plexity refers to the fact that big data are generated through a

myriad of sources. This imposes a critical challenge: the need to

connect, match, cleanse and transform data received from differ-

ent sources.

Value. Oracle introduced Value as a defining attribute of big

data. Based on Oracle’s definition, big data are often character-

ized by relatively “low value density”. That is, the data received

in the original form usually has a low value relative to its volume.

However, a high value can be obtained by analyzing large vol-

umes of such data.

Apache Spark

Spark is a next generation paradigm for big data processing de-

veloped by researchers at the University of California at Berke-

ley. It is an alternative to Hadoop which is designed to overcome

the disk I/O limitations and improve the performance of earlier

systems. The major feature of Spark that makes it unique is its

ability to perform in-memory computations. It allows the data to

be cached in memory, thus eliminating the Hadoop’s disk over-

head limitation for iterative tasks. Spark is a general engine for

large-scale data processing that supports Java, Scala and Python

and for certain tasks it is tested to be up to 100× faster than Ha-

doop MapReduce when the data can fit in the memory, and up to

10× faster when data resides on the disk. It can run on Hadoop

Yarn manager and can read data from HDFS. This makes it ex-

tremely versatile to run on different systems (Maheshwar, Do-

navalli, and Bhovi 2017).

Apache Spark is user friendly programming interface used to

decrease coding efforts and provide better performance in a ma-

jority of the cases with problems related to big data also it is a

powerful processing framework that provides an ease of use tool

for efficient analytics of heterogeneous data. Spark not just pro-

vides an alternative to Map Reduce, but also has options for SQL

like querying with Shark and a machine learning library called

MlLib. Apache Spark started as a research project at UC Berke-

ley in the AMPLab, was started with a goal to design a program-

ming model that supports a much wider class of applications than

MapReduce, while maintaining its automatic fault tolerance (Go-

palani and Arora 2015).

A key concept of Spark is Resilient Distributed Datasets (RDDs).

An RDD is basically an immutable collection of objects spread

across a Spark cluster. In Spark, there are two types of operations

on RDDs: (1) transformations and (2) actions. Transformations

consist in the creation of new RDDs from existing ones using

functions like map, filter, union and join. Actions consist of final

result of RDD computations.

A Spark cluster is based on a master/slave architecture with three

main components (Inoubli et al. 2018):

Driver Program: this component represents the slave node in a

Spark cluster. It maintains an object called sparkContext that

manages and supervises running applications.

Cluster Manager: this component is responsible for orchestrating

the workflow of application assigned by Driver Program to

workers. It also controls and supervises all resources in the clus-

ter and returns their state to the Driver Program

Worker Nodes: each Worker Node represents a container of one

operation during the execution of a Spark program.

Spark offers several Application Programming Interfaces (APIs)

(Inoubli et al. 2018):

Spark Core: Spark Core is the underlying general execution en-

gine for the Spark platform. All other functionalities and exten-

sions are built on top of it. Spark Core provides in-memory com-

puting capabilities and a generalized execution model to support

a wide variety of applications, as well as Java, Scala, and Python

APIs for ease of development.

Spark Streaming: Spark Streaming enables powerful interactive

and analytical applications across both streaming and historical

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 54

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

data, while inheriting Spark's ease of use and fault tolerance

characteristics. It can be used with a wide variety of popular data

sources including HDFS, Flume, Kafka, and Twitter

Spark SQL: Spark offers a range of features to structure data

retrieved from several sources. It allows subsequently to manipu-

late them using the SQL language.

Spark MLLib: Spark provides a scalable machine learning li-

brary that delivers both high-quality algorithms (e.g., multiple

iterations to increase accuracy) and high speed (up to 100x faster

than MapReduce).

GraphX: GraphX is a Spark API for graph parallel computation

(e.g., PageRank algorithm and collaborative filtering).

Reasons to choose Apache Spark

There are many reasons for choosing Apache Spark to implement

the enhanced k-means algorithm on it, these reasons are(Gopalani

and Arora 2015):

1. Spark uses the concept of RDD which allows us to store data

in memory and persist it as per the requirements. This allows

a massive increase in batch processing job performance (up to

ten to hundred times as much as that of conventional Map

Reduce).

2. Spark also allows us to cache the data in memory, which is

beneficial in case of iterative algorithms such as those used in

machine learning.

3. Traditional MapReduce and DAG engines are suboptimal for

these applications because they are based on acyclic data

flow: an application has to run as a series of distinct jobs,

each of which reads data from stable storage (e.g. a distribut-

ed file system) and writes it back to stable storage. They incur

significant cost loading the data on each step and writing it

back to replicated storage.

4. Spark allows us to perform stream processing with large input

data and deal with only a chunk of data on the fly. This can

also be used for online machine learning, and is highly appro-

priate for use cases with a requirement for real time analysis

which happens to be an almost ubiquitous requirement in the

industry.

5. In particular, MapReduce is inefficient for multi-pass applica-

tions that require low-latency data sharing across multiple

parallel operations. These applications are quite common in

analytics, and include:

• Iterative algorithms, including many machine learning al-

gorithms and graph algorithms like PageRank.

• Interactive data mining, where a user would like to load

data into RAM across a cluster and query it repeatedly.

• Streaming applications that maintain aggregate state over

time.

Apache Flink

Flink is an open source framework for processing data in both

real-time mode and batch mode. It provides several benefits such

as fault-tolerant and large-scale computation. The programming

model of Flink is similar to that one of MapReduce. By contrast

to MapReduce, Flink offers additional high-level functions such

as join, filter and aggregation. Flink allows iterative processing

and real time computation on stream data collected by different

tools such as Flume and Kafka . It offers several APIs on a more

abstract level allowing the user to launch distributed computation

in a transparent and easy way. Flink ML is a machine learning

library that provides a wide range of learning algorithms to create

fast and scalable Big Data applications (Inoubli et al. 2018)

Flink system consists of several layers. In the highest layer, us-

ers can submit their programs written in Java or Scala. User pro-

grams are then converted by the Flink compiler to DAGs. A

DAG produced by the Flink compiler is received by the Flink

optimizer in order to improve performance by optimizing the

DAG (e.g., re-ordering of the operations). The second layer of

Flink is the cluster manager which is responsible for planning

tasks, monitoring the status of jobs and resource management.

The lowest layer is the storage layer that ensures storage of the

data to multiple destinations such as HDFS and local files(Inoubli

et al. 2018).

Reasons to choose Apache Flink

There are many reasons for choosing Apache Flink to implement

the enhanced k-means algorithm on it, these reasons are [1][2]:

1. Apache Flink is an open source platform for distributed data

processing which enables the user to write programs that

can be distributed over number of worker nodes. This

makes it possible to process large-scale datasets faster than

a single computer could.

2. Flink’s API offers two dedicated iteration operators to spec-

ify iterations: 1) bulk iterations, which are conceptually sim-

ilar to loop unrolling, and 2) delta iterations, a special case

of incremental iterations in which the solution set is modi-

fied by the step function instead of a full recomputation.

Delta iterations can significantly speed up certain algo-

rithms because the work in each iteration decreases as the

number of iterations goes on.

3. An important reason relates to iterations handling. Spark

implements iterations as regular for-loops and executes

them by loop unrolling. This means that for each iteration a

new set of tasks/operators is scheduled and executed. Each

iteration operates on the result of the previous iteration

which is held in memory. Flink executes iterations as cyclic

data flows. This means that a data flow program (and all its

operators) is scheduled just once and the data is fed back

from the tail of an iteration to its head. Basically, data is

flowing in cycles around the operators within an iteration.

Since operators are just scheduled once, they can maintain a

state over all iterations.

4. Among the big data frameworks, we have mentioned earlier,

Apache Flink and Spark are popular and efficient frame-

works as these two have been used heavily in machine

learning applications

5. owing to having personalize machine learning libraries

called FlinkML and MLib, respectively. Because of the in-

memory nature of the computations, we can argue that Flink

and Spark provide a comparable feature set for machine

learning applications. Even though these frameworks have

been positioned as enablers of large-scale machine learning

.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 55

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

2 RELATED WORK

Cui et al. presents an Optimized big data K-means cluster-

ing using MapReduce which is an optimized K-Means for big

data using MapReduce that eliminates the dependence of iteration

and reduces the computation cost of algorithms and propose

strategies for center merging, where a sequence of three MapRe-

duce (MR) jobs are used for the purpose. However, sampling

technique is used in the first MR job and in the final MR job then

data set is mapped to centroids using the Voronoi diagram [3].

Weizhong Zhao et al. presents Parallel k-means clustering

based on MapReduce but the initial seed selection is random.

Moreover, the algorithm is iterative, and MapReduce jobs are

influenced by multiple iterations [4].

Bahmani et al. presents a Scalable K-Means++ which is an ef-

ficient parallel version k-means|| of the inherently sequential k-

means++. The algorithm is simple and embarrassingly parallel

and hence admits easy realization in any parallel computational

model. The non-trivial analysis show that k-means|| achieves a

constant factor approximation to the optimum and the experi-

mental results on large real-world datasets demonstrate the scala-

bility of k-means|| [5].

Xiao Cai et al. presents Multi-View K-Means Clustering on

Big Data that is used to tackle the large-scale multi-view cluster-

ing problems with large scale heterogeneous data sets, all the

methods are repeated 50 times using random initialization to re-

port the average performance [6].

Sinha et al. presents A Novel K-Means based Clustering

Algorithm for Big Data that is implemented on Spark and

automate the input of number of clusters in advance, also it tackle

the resolution problem and the experimental results prove that the

algorithm outperforms the K-Means algorithm implemented in

Spark Machine Learning Library and works efficiently on large

scale data sets but data sets do not contain large scale real time

streaming data and did not consider other important factors of big

data such as velocity and veracity. Moreover, the algorithm

scales gracefully on increasing the data size and adding more

machines to cluster [7].

3 PROPOSED WORK

3.1. An overview of K-means Algorithm
K-means clustering algorithm is a kind of partitioning cluster-
ing methods, a typical distance-based clustering algorithm,
using distance as similarity evaluation. K-means algorithm is
simple for large-scale data mining with high efficiency and
scalability and fast with a more intuitive geometric meaning. It

has been widely used in pattern recognition, image processing
and computer vision. At the same time, the satisfactory results
are obtained [8]. It performs the following steps to form the
clusters [9]

K-means Algorithm

Input: k: the number of clusters or groups D:data set of 'n'
objects
Output: Formed k clusters.
Algorithm:

1. Input k value and dataset.
2. If k == 1, then Exit.
3. Else
4. Select k objects from D to the closest centroid.
5. Assign each point d1 in D to the closest centroid.
6. Calculate and update new cluster centroids.
7. Repeat from step 5 until centroids no longer move.

Here are the strength and weakness points of the k-means al-
gorithm [10][11]:
Strength of k-Means algorithm:

i. Relatively efficient O(knt) where k is the number of
clusters, n is the number of objects, t is the num-
ber of iteration.

ii. Very easy to implement and understand.
iii. Objects automatically assigns to its clusters.
iv. Often terminate at local optimum.

Weakness of k-Means algorithm:

i. The number of cluster, K, must be determined be-
forehand. So the user need to specify k (number
of clusters)

ii. We never know the real cluster, using the same data,
if it is inputted in a different way may produce
different cluster if the number of data is a few. So
different initial k objects lead to different cluster-
ing results.

iii. Unable to handle noisy data and outlier.
iv. Not suitable for non-convex shapes.
v. Cannot be applied directly to categorical data only

numerical data.
vi. When the numbers of data are not so many, initial

grouping will determine the cluster significantly.
vii. We never know which attribute contributes more to

the grouping process since we assume that each
attribute has the same weight.

So in order to overcome those weaknesses is to use K-mean
clustering if there are available many data and to reach a way
to get the optimal number of clusters for a dataset and how to
select the initial centroids in an optimal way.

3.2. Proposed Optimal Number of Clusters Indication Algorithm

The proposed algorithm is based on a joint combination of
three different methods; Jump Statistics (JS), Gap Statistics
(GS), A Fisher-wise criterion / Calinski and Harabasz (CH),
which lies under variance Based Approach for indicating the
optimal number of clusters.
The rationale beyond taking the results of those three methods

————————————————

 Manal A. Abdel-Fattah is currently working as an Associate Professor in
Information Systems Department, Helwan University, Egypt, E-mail:
manal_8@hotmail.com

 Yehia M. Helmy is currently working as a professor and head of business
Information Systems Department, Helwan University, Egypt, E-mail:
ymhelmy@yahoo.com

 Sara M. Mosaad is currently working as a Senior Teaching Assistant in
business Information Systems Department, Helwan University, Egypt, E-
mail: sara.mosaad87@gmail.com

IJSER

http://www.ijser.org/
mailto:ymhelmy@yahoo.com

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 56

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

is that; One method is not sufficient enough to give the accu-
rate results regarding the optimal number of clusters on a par-
ticular data set. So, here we have used these three important
methods by taking majority must be granted logic to get the
accurate results. If we include all the methods of determining
the optimal number of clusters the complexity of the optimal
number of cluster detection method will increase. These three
methods are effective and qualitative to predict the number of
clusters.

Optimal Number of Clusters Indication Algorithm

Input: Data Set
Output: Optimal Number of Clusters (Optk)

1. Find the values of JS[i], GS[i] and CH[i], for i =
1,2,3,….k (number of cluster).

2. Find ZJS = max [JS[i]] , find the value of i (number of
clusters) = NJS for which JS [i] is maximum. Similarly
find ZGS = min[GS[i]] , find the value of i = NGS for
which GS [i] is minimum, find ZCH = max[CH[i]], find
the value of i = NCH for which CH [i] is maximum.

3. Apply majority must be granted logic (voting ap-
proach) among these three parameters denoted as NJS,
NGS, NCH, if at least 2 results in the same number of
clusters then go to step 5, otherwise go to the next
step.

4. Let Calinski-Harabasz index CHi be the quality index
for the value attained in step 2., then calculate the in-
stantaneous rate of change between each two succes-
sive number of clusters r = CHi+1 – CHi.. find the max-
imum r, then the optimal number of cluster is i that
maximize r.

5. Stop.

3.3. Proposed K-means Algorithm

The proposed k-means is a hybrid algorithm that combines
both; the proposed optimal number of clusters indication al-
gorithm and the original k-means algorithm.

Proposed K-means Algorithm

Input: k: the number of clusters or groups D:data set of 'n'
objects
Output: Formed k clusters.
Algorithm:

1. Input k value and dataset.
1.1. Find the values of JS[i], GS[i] and CH[i], for i =

1,2,3,….k (number of cluster).
1.2. Find ZJS = max [JS[i]] , find the value of i (number

of clusters) = NJS for which JS[i] is maximum.
Similarly find ZGS = min[GS[i]] , find the value of
i = NGS for which GS[i] is minimum, find ZCH =
max[CH[i]], find the value of i = NCH for which
CH[i] is maximum.

1.3. Apply majority must be granted logic (voting ap-
proach) among these three parameters denoted as
NJS, NGS, NCH, if at least 2 results in the same
number of clusters then go to step 5, otherwise go

to the next step.
1.4. Let Calinski-Harabasz index CHi be the quality

index for the value attained in step 2., then calcu-
late the instantaneous rate of change between
each two successive number of clusters r = CHi+1
– CHi. find the maximum r, then the optimal
number of cluster is i that maximize r.

1.5. Stop.
2. If k == 1, then Exit.
3. Else
4. Select k objects from D to the closest centroid.
5. Assign each point d1 in D to the closest centroid.
6. Calculate and update new cluster centroids.
7. Repeat from step 5 until centroids no longer move.

4 EXPERIMENTAL PLAN

The proposed algorithm will be simulated on a cluster of 4
machines with the configuration stated in Table 1. All the
nodes were connected by a 100 Mbps Ethernet switch with
UBUNTU 14.04 LTS operating system. The Hadoop version
Hadoop 2.6.0 will be installed and on top of spark 1.6.0.
Apache Hadoop, Spark and Flink are open source platforms
that can be downloaded from [12], [13] and [14] respectively.

TABLE 1: Cluster configuration

Node03 Node02

Node01

Master

PC, Intel,
Core(TM),
i7-4510U
CPU GHz

Blade
Server,
HP
BL
4603,
Gen 9,
Intel
Xeon
CPU
E5-
2630v3
@2.40
GHZ

Server
machine,
ML 350E,
Gen 8.
Intel
Xeon
CPU
E5-24070
@2.20
GHz

Server
machine,
ML 350E,
Gen 8,
Intel
Xeon
CPU
E5-24070
@2.20
GHz

CPU Configu-
ration

3 7 1 1 CPU cores
allocated to
Spark

6GB 10GB 10GB 10GB RAM allocat-
ed to Spark

4.1. Datasets
For checking the quality of our Spark/ Flink based clustering
algorithm. We used synthetic large scale data sets to check the
scalability. The data sets is considered as big data carrying all
the big data characteristics to judge the quality of clusters. It is
to be noted that the data source used is HDFS and the block
size is 64MB. The data sets are thus stored across the various
nodes in the cluster. To show the efficiency of Spark and Flink
validity index, discussed later will be used.

4.2. Performance Evaluation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 57

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Our proposed algorithm has been compared with the cluster-
ing algorithm present in Spark MLLib library. Most of the dis-
tributed clustering algorithm present in literature is based on
MapReduce, and as illustrated earlier performance of Spark is
much better than MapReduce. Hence, experimental compari-
son with MapReduce based algorithm is not justified. First we
will check our algorithm for the optimal number of clusters to
be generated. For this we will use data set that cover all the big
data characteristics. The data source used in both the cases is
HDFS. the time taken to run our proposed algorithm and the
K-Means given in MLLib will be measured, the execution time
by varying the number of machines will be measured. How-
ever, for the basic K-Means the number of iteration required to
get the optimal number of cluster will be measured, and
whether the proposed algorithm can handle the over-
resolution problem or not.
4.3. Cluster Validity
The performance of clustering algorithm will be measured
with the validation indices. Calinski-Harabasz index is a wide-
ly used validation metric is used to assess the quality of the
clusters because of its faster computation than other indices.
The maximum value of the CH the better is the cluster quality,
as it maximizes the dispersion between clusters and minimize
dispersion within clusters. CH(C) is defined as follows:
CH(c)= × (1)
Where Bm is the between-cluster scatter matrix, While Wm is
the internal scatter matrix, Nis the total number of clustered
samples and c is the number clusters.
Wm= (x−ci) (x−ci)T (2)
Bm= (ci−k)(ci−k)T (3)
Where,

 Ci are the set of points in the cluster.
 ci is the center of the cluster Ci,
 ni is the number of points of Cluster Ci.
 k is the center of the input data set.
 k is the number of clusters
 cm is the centroid of cluster m
 σm is the average distance of all points in the cluster m

to centroid cm.

5 CONCLUSION & FUTURE WORK

In this paper, we have presented an enhanced K-Means algo-
rithm that will be implemented on both Apache Spark and
Apache Flink big data platforms. The Proposed k-means algo-
rithm will be tested to clarify how it can tackle the major
drawback of the classical K-Means algorithm; the random
number of clusters is not known in advance and the resolution
problem. Experiments will be held on both platforms; Spark
and Flink Machine Learning Libraries with large scale data
sets that cover all the big data properties

REFERENCES

[1] O. Marcu et al., “Spark versus Flink  : Understanding

Performance in Big Data Analytics Frameworks To cite this

version  : Spark versus Flink  : Understanding Performance in

Big Data Analytics Frameworks,” 2016.

[2] S. Kamburugamuve, P. Wickramasinghe, S. Ekanayake, and G. C.

Fox, “Anatomy of machine learning algorithm implementations

in MPI, Spark, and Flink,” Int. J. High Perform. Comput. Appl., vol.

32, no. 1, pp. 61–73, 2018.

[3] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, “Optimized big data K-

means clustering using MapReduce,” J. Supercomput., vol. 70, no.

3, pp. 1249–1259, 2014.

[4] Q. H. Weizhong Zhao, Huifang Ma, “Parallel K -Means

Clustering Based on MapReduce,” pp. 674–679, 2009.

[5] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S.

Vassilvitskii, “Scalable K-Means++,” pp. 622–633, 2012.

[6] H. H. Xiao Cai, Feiping Nie, “Multi-ViewK-Means Clustering on

Big Data,” in The Twenty-Third International Joint Conference on

Artificial Intelligence, 2013, pp. 2598–2604.

[7] A. Sinha and P. K. Jana, “A novel K-means based clustering

algorithm for big data,” 2016 Int. Conf. Adv. Comput. Commun.

Informatics, ICACCI 2016, pp. 1875–1879, 2016.

[8] L. Ma, L. Gu, B. Li, Y. Ma, and J. Wang, “An Improved K-means

Algorithm based on Mapreduce and Grid,” vol. 8, no. 1, pp. 189–

200, 2015.

[9] P. Arora, D. Virmani, and H. Jindal, “Sorted K-Means Towards

the Enhancement of K-Means to Form Stable Clusters,” vol. 508,

2017.

[10] A. M. Baswade and P. S. Nalwade, “Selection of Initial Centroids

for k-Means Algorithm,” Ijcsmc, vol. 2, no. 7, pp. 161–164, 2013.

[11] K. Teknomo, “K-Means Clustering Tutorial,” Medicine

(Baltimore)., pp. 1–12, 2006.

[12] “Apache Hadoop,” https://hadoop.apache.org/, 2019. .

[13] “Apache Spark,” http://spark.apache.org/, 2019. .

[14] “Apache Flink,” https://flink.apache.org/, 2019. .

IJSER

http://www.ijser.org/

